翻訳と辞書
Words near each other
・ Čaška
・ Čaška Municipality
・ ČD Cargo
・ ČD Class 380
・ ČD Class 471
・ ČD Class 680
・ ČD Class 810
・ ČD Class 814
・ Čebatoriai
・ Čebine
・ Čebovce
・ Čebren Hydro Power Plant
・ Čebulj
・ Čebín
・ Čech
Čech cohomology
・ Čech-to-derived functor spectral sequence
・ Čechie
・ Čechomor
・ Čechočovice
・ Čechtice
・ Čechtín
・ Čechy
・ Čechy (Přerov District)
・ Čechy pod Kosířem
・ Čechy, Nové Zámky District
・ Čechynce
・ Čechůvky
・ Čedasai
・ Čede Filipovski Dame


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Čech cohomology : ウィキペディア英語版
Čech cohomology

In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.
==Motivation==
Let ''X'' be a topological space, and let \mathcal be an open cover of ''X''. Define a simplicial complex N(\mathcal), called the nerve of the covering, as follows:
* There is one vertex for each element of \mathcal.
* There is one edge for each pair U_1,U_2\in\mathcal such that U_1 \cap U_2 \ne \emptyset.
* In general, there is one ''k''-simplex for each ''k+1''-element subset \\,\! of \mathcal for which U_0\cap\cdots\cap U_k\ne\emptyset\,\!.
Geometrically, the nerve N(\mathcal) is essentially a "dual complex" (in the sense of a dual graph, or Poincaré duality) for the covering \mathcal.
The idea of Čech cohomology is that, if we choose a "nice" cover \mathcal consisting of sufficiently small open sets, the resulting simplicial complex N(\mathcal) should be a good combinatorial model for the space ''X''. For such a cover, the Čech cohomology of ''X'' is defined to be the simplicial cohomology of the nerve.
This idea can be formalized by the notion of a good cover, for which every open set and every finite intersection of open sets is contractible. However, a more general approach is to take the direct limit of the cohomology groups of the nerve over the system of all possible open covers of ''X'', ordered by refinement. This is the approach adopted below.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Čech cohomology」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.